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Abstract

Let PtA ,*) be the largest integer such that there exists a

biximry group code (Ni) all of whose non-zero elements have weight

equal to or larger than Ar-(,-A).

In this report values of &r(j, *) are given for oz 4-. and

•fS-! lý , as well as for o ±f .2jý . Further, new upper and

lower "ounds are obtained which are easy to compute and, in certain

regions, better than other known bounds.
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Introduction

We study here the function zu'that associates with each pair of

integers n,• with ozle A , the largest integer .r6eI) such that there

exists a binary group code A6,4) each of whose non-zero elements has

a weight not smaller than •'rf).

Great efforts have been spent by many scientists in the investigation

of teand of equivalent or related notions. Sophisticated and powerful

tools have been used. to derive bounds or some isolated values. Still,

rather lit~tle is known.

We have approached the topic afresh, starting with the naive

ambition to describe r by formulas or, at least, by extensive tables.

Clearly we have not succeeded. But using only very elementary mathematics

and hand computation (together with some known results), we have

obtained, in particular, new upper and lower bounds, and new values.

The numerical results are given in two tables in the last section:

one covers the range k7.!: 4/0os ) and the other the range o n± .•

The better bounds, given in section 3, are restricted to the

range o4 t t . They are very easy to compute and, in some

regions, are better than any other bound known to us.

We hoped eventually to characterize tr by establishing functional

equations satisfied by it. We failed, perhaps because the many

properties listed turned out to be consequences of only 8 of them,

These are satisfied by a class of functions, not only byw. To obtain

bounds, then, we have only to find the smallest function and the

largest one within the class.

A paper by J. H. Griesmer (A Bound for Error-Correcting Codes,
I.B.M.J.R.D., 4, pp.532-542, Nov. 1960) has recently been brought to

our attention. Wq plan to study in a later report the relations

between his work and ours.

iii
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1. Functional relations satisfied bylW-.

For any integral valued function f defined for pairs (y, -) of integers

satisfying ol".# i- , consider the following functional, relations.:

1. ý(AN,v e) (l. i
2. -

!4.

We will now show thatAxr satisfies all five relations and thus all

consequences of them, in particular those that we will. derive below.

Proposition I The function/wr satisfies 1. to 5.

The proofs of 1. and 2. are trivial. To prove 3., delete the first row

and the first column of the generating matrix in '"echelon form" of an

code: what remains is the generating matrix of an code,

with not-smaller minimal weight b
The first part of 4. can be obtained by juxtaposing the generating

matrices: of an(•%-) and an (,/) code; and the second' part is obvious-.

Finally 5., also well known, is proven by adding an "overall parity

check" to the elements of a code (ý1.1 with

Because of Proposition 1, part of the study of, 4&can be considered as

the study of the relations- L. - 5.

Proposition 2 Relations 2. and 3. imply

;[ 7.

In fact )-- yields 6.; which, with 2., gives

Proposition 3 If o• 1 and -k , then relations 3. and 4. imply

,-,8. a
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• G('-7'I-•, • by 3.,

S"•(-',4?.)+-• by 4.

Proposition 4 Relations 1. and 4. imply

9. -( r = .

If r=/ , this is 1.: we can thus use induction on n • By 4.:
6.C•-s,~ ~ ~ ~~ : ()I(•)- •(, - i:•,,•

Thus

I( ,,)--)) RA .

Proposition 5 Relations 1., 2., and 4 imply that, given two positive

integers•k and a , there exists I such that #C,&2tal .

If &./ , take n=• : by 1., O(A•,) / We can thus assume the

proposition true for all pairs-A. with • . , and use induction. There

exists then an integer m such that hIk>= a_-I :. let, moreover, ) be

the largest integer with this property. Then, by 4., fe( ):,• :-(-, /=a,

but also (ii-.)Cm-t= -.

Corollary Relations, 1., 2., and 4. imply that, given a positive integer a-,

there are infinitely many pairs h,f such that I-GIfe) =a.

Proposition 6 Relations 2., 4. and 5. imply

10. a)~e= ,?eA if 11 .2-f

In fact, by 5., "(,", has to be even. But 2. and 4. yield

Corollary If ) , relations 2., 4. and 5. imply for

neighboring points the values given in the table below:

""-/ _. -•+-2-
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The-4 -column is given by 5. and Prop. 6; the other two columns by

properties 2,., 3-, and 6.

Lemma 1 Let 4, verify 1., 2., 4. and 5. as well as: •(n, 6o, -k)
for alI h,- at which 4 has an odd value. Then

If = , for some n' -t we have also Y(JJ ")' = /
by Prop. 5. Thus by assumption : but

then 5. and Prop. 6 imply =& i . Thus F and • agree whenever one of

them has an odd value; 2. and PIrop. 5 show then for all

pairs p),• -

Lemma 2 Let +,. verify 1., 2., 4. and 5- as well as: •4f)> 7

for all n;• at which - has an odd value. Then J; Z

In fact if , f)'I-7 , for some W.f we have -

Thus J, = k) Ž)GJ) and s->' : consequently

_ ( -, i> (n, Thus f7• whenever one of them is odd.

Let 0),) and 4%*) be both even: there is then.-4a such that

or

In the first case we have

that is, F kA C)A)

In the second case

hence the lemma.

A very similar proof yields also:

Lemma 3 Let , verify 1., 2., 4. and 5. as well as: > g(n, f-)

for all "A at whicht has an odd value. Then -- •.

Combining the last three results we obtain:

Proposition 7 Let F,. verify 1., 2., 4. and 5. as well as: ;c()•. •
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for all ,-f at which 4 [or 4r J has an odd value. Then - 2 .

Proposition 8 Let -f4,,) be odd. Then 4. and 5. imply equivalence

between:

a) v-(f, +- 4 (yn, k~ -0* m, -)

Assume a): then b) follows from the inequalities

46*) -I- . (m)-ýj= *)ý;

± -GLil)- C i m le n+wi, A,'

Conversely, if b) holds:

4-m *i -f

As a consequence:

Corollary Let Nk,-ý) and •(y,•) be odd. Then 4. and 5. imply

equivalence between:

a) •(••• +••5) = = •+• )
b) ~(m,+ RýV' -) -PnYjZ) -/- A(f~~ )- = ' A)

Set 4(.)=•-•+- for ck=A . Then:

Proposition 9 The function h satisfies 1. to 5. Moreover any function

Ssatisfying 1., 3. and 4. satisfies also

For +Fw-',. this inequality has been proven also, for instance, in [1]

and [2]. That 4ý satisfies 1. to 5. is obvious. To establish ll., use 3.

to obtain

Prop. 4 completes the proof.

-4
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For o, z!' ;I. set now

Sif Vk*r-V j no-~ r, if-

Equivalently

C 4~~-J-)if

or

if

Proposition 10 The function 4; satisfies 1. to 5. Moreover any function

Ssatisfying 1., 2., 4. and 5. satisfies also

Property 3. is- the only one whose proof is not immediate.. Assume first

-=-r-. . Then and 4=rk . There exists

then a smallest integer ct;,o such that n=(r-a)•÷-r-4-/)*U ;

for some ý?:o . Then + ,i)& ;(r-o)-/ if b-o) =-'?(r-,-) if •> .

In either case, 4. holds.

Assume now - -. n-I -. (r+/Xi-')4-- ; This implies

£(Y-Iý •-I =- .2 r and y- 4 •-(N- f Again there is a smallest

integer a.>o such that

and the inequality 4. follows.

In order to establish 12. we will use Prop. 7. Let us then prove

( when is odd,. that is when )7.t.j=r('h,)
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If •/, and -ý( = ý(kA) .Assume thus

Since the right hand member is odd, we have also

Thus

The assumptions of Prop. 7 are hence established and 12. follows.

The inequalities 11. and 12. give easy geometric bounds for the functions

with properties 1. to 5. For fixed-k. , the graph of A is a straight line

with slope )= )-i Vr' ; but the graph of 5 can be interpolated by a

straight line - of slope - . Thus, for -=/ the two lines

coincide; for .>i , their "Idifferencell increases with- . If we keep

0 fixed, 5 is again a straight line, now with slope-} . But o

resembles an hyperbola of the typet/- , which grows closer to its

asymptotes (and hence farther away from + ) the larger c=

becomes.

In the following two graphs . 5 and ur have been plotted, once for

"= •and next for k;=1•

-6-
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2. Study in the region o0 4 -A n ='

It is well known that..wsatisfies:

13. (• - for

This is not a consequence of 1. to 5., as, for instance, • shows. An

easy proof yields:

Proposition 11 Relations 4. and 13. imply

14. _and for .

The first part of the proposition follows directly from 13. and the

right-hand part of 4. The second part follows from the first and from
the left-hand part of 4:

Letting y'•-1C , we have

It is also known that the following holds forw:

15. '

Corresponding to Prop. 11, and with a similar proof, we have now:

Proposition 12 Relations 4. and 15. imply

16. -(.zl• )e EZn- and 6 - for

For 0 t4t2 define a function as follows

max•(J•-2 7A.) • A) if if z z- -

ma (' if *" h~- i

More explicit, but apparently more cumbersome, formulas can be easily

derived. It should not be hard also to prove that ýo , where defined,

satisfies 1. to 16.: in fact 3. seems the only non obvious relation.

-9-
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We are, howeveir, interested only in the following result:

Proposition il, Let -ý satisfy 1. to 16.: then

317. (if ;7 _ 2

As long as : 17. is relation 12.,. and thus holds. In the next
-k-i.

interval, when 0), =4 -A we have also

Y' if

Our result then follows from 15. and 4. Relation 2. implies then 17. as

long as ; and 2. with 4. imply 17. when - ,,).

Finally 13. and 4. prove our result when -zi- because

this is equivalent to

2 -r if h= .2 /-

Finally, 16. shows --a)d _ (a- i).

It will be shown later that ofor 3 Some

experimental evidence seems to indicate that, if -f''B, max(MrC?,)- o e))

is probably reached around •--A -t0 - A2 Notice that f(•/# -

while - '- "zA)• ( i -2, )giving a difference

approximated by 4-2.

or

which tends to -12 when k increases.

In parallel to 5 and Prop. 13, and with similar proof, we obtain an

upper bound as follows.

"For , let

P7 , mhi for -'

0- for .2 ý. .2

-~10-
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We have then:

Proposition 14 Let • satisfy 1. to 16.: then

18. t if 7 t.'

Again, as f or m , max(n, ,Ye)- •u-Ci)) seems to be reached at

T1= •~'•- ' , where the difference is

The considerable improvement from the bounds •, 4, to has been

obtained by imposing the "boundary values" 13. and 15. It seems natural

that further boundary values would yield better and better bounds. Since

ur is known for i= Z - r =-- .2 ,,, •-/ we could probably obtain

fair approximations tos.r for . But the region it - -

is of much greater practical interest: and, in it, practically nothing

is known.

Other, better bounds, could also be obtained if other functional relations

satisfied byA- were known. A step in this direction is taken in the

next section. We terminate this section by plotting 7o) and, when

known, " f•or = and for n=?o . In fig. 5, 6 and 7, is compared

with the Varsharmov - Gilbert lower bound [31.

-11-
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Difference: - Varsharmov)

4- 2 3 4 5 6 7 8 9 70 1 1 12 13 14 15 !6

2 0

3 0

4 0 0

5 0 0

6 0 0 0

7 1 0 0 0

8 0 1 0 0 0

9 1 -1 0 0 0

10 0 -1 -1 0 0 0

11 0 -1 -1 -1 0 0 0

12 0 0 -1 -1 -1 0 0 0

13 1 1 -1 -1 -1 -1 0 0 0

14 2 1 0 -2 -1 -1 -1 0 0 0

15 2 2 -1 -1 -2 -1 -1 l1 0 0 0

16 2 2 -1 0 -2 -2 -1 -1 0 0 0 0

17 2 -1 -1 -1 -2 -1 -1 -1 0 0 0 0

18 2 -2 -1 -1 -2 -2 -1 -1 -1 0 0 0

19 1 -2 -2 -1 -2 -2 -2 -1 -1 -1 0 0

20 1 -1 -2 -1 -1 -2 -2 -2 -1 -1 -1 0

21 1 -1 -2 -2 -1 -2 -2 -2 -2 -1 -1 -1

22 2 -1 -3 -2 -2 -1 -3 -2 -2 -2 -1 -1

23 2 -1 -2 -2 -2 -1 -2 -3 -2 -2 -2 -1

24 1 0 -1 -3 -2 -2 -1 -3 -2 -2 -2 -1

25 1 1 -2 -3 -3 -2 -2 -2 -3 -2 -2 -2

26 1 1 -2 -3 -3 -2 -2 -2 -3 -3 -2 -2

27 2 2 -3 -2 -3 -3 -2 -2 -2 -3 -3 -2

28 2 2 -3 -2 -4 -3-3 -2 -2 -3 -3 -3

29 3 3 -3 -3 -3 -4 -3 -3 -2 -3 -3 -3

30 4 3 -4 -3 -2 -4 -3 -3 -2 -2 -4 -3
31 4 4 -3 -3 -3 -4 -4 -3 -3 -2 -3 -4

32 4 5 -3 -4 -3 -4 -4 -3 -3 -2 -4

Fig. 7

-16-
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3. Study in the region J±n_"A

From Corollary 3. to Proposition 7. of [4] follows thataw is one

of the functions • verifying:

19. Otif.

The use of this relation will not improve the lower bound , but has

some effect on the upper bound. Let be defined for o, -e ki -2 by:

i-i) if fl-2a

if i-,1L) A J
-I"

Proposition 15 Let * satisfy 1. to 19.: then

20. if ~ • f-

The proof is by induction on k . For f=/e then n / and 20.

holds by definition of . So assume 20. for fe- . By 3. we have,

for 6 -• 2

Thus assume bŽ• . Clearly; because of 15. and 19., we can also

assume h l -. '/-/ In this interval, then, 20. follows, at once from

5. and 19. In fact [(if )Y thus

we could only have + = ±
5

I1 )+/

but then

a contradiction.

-17-
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Fig. 8 and 9 illustrate the relations between the five bounds , • ,

Crosses locate known values of.Ar. These graphs suggest

that is a rather good upper bound foru-', whereas 7. should be

further improved. In particular, fig. 8 .as well as fig. 5 show

possibly that the knowledge of•,• . f), or a good lower bound for

it, would considerably improve 7,.

Fig. 10, 11, and 12 compare with Hamming's and Plotkin's upper bounds.

To compute •. for a given pair C•i,) with ?-• .2 - determine an integer

r o such that

LP7r�-

Then ( ;) .(n-r, •-') is explicitly given in the definition. It

may also be appropriate to observe that for

all r:? n in fact 'L is constant for constant 2-•

-18-
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Difference: (Hamming -

,K 1 2 3 4 5 6 7 8 9011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627

2 1

3 1

4 0 1

5 0 1

6 0 0 1

8 0-1 0 0 1

9 o-1 0 0 1

10 0 0 -1 0 0 1

01 0 0 -1 0 0 1

12 1 0 0 0 - 0 0 0 1

13 0 1 0 0 0 -1 0 0 1

14 2 0 1 0 0 0 -1 0 0 1

15 1 0 0 1 0 0 0 -1 0 0 1

16 2 0 1 0 0 -2 - 2 0 0 1

17 0 1 0 0 -1 0 0 -2 -1 0 0 1

18 2 0 1 0 0 -1 0 0 -2 - 2 0 0 1

19 2 0 0 -1 0 0 -1 0 0 -2 -1 0 0 1

20 1 2 0 0 -1 0 0 -1 0 0 -2 - 1 0 0 1

211 2 0 0 -1 0 0 - 1 0 0 -2 -1 0 0 1

22 2 0 1 0 0 0 -1 0 0 -2 0 0 -2 - 2 0 0 1

23 2 2 0 1 0 0 0 -1 0 -2 - 1 0 0 -2 - 1 0 01

24 3 2 2 0 1 0 0 -2 -1 0 -2 -1 0 0 -2 - 1 0 0 1

25 2 3 2 0 0 -0 0 -2 - 1 0 -2 - 1 0 0 -2 - 1 0 0 1

26 4 2 1 2 0 0 -1 0 0 -2 - 1 0 -2 -1 0 0 -2 - 1 0 0 0

27 4 2 2 1 2 0 0 -1 0 0 -2 -1 0 -2 -1 0 0 -2 -1 0 0 1

28 3 4 2 2 1 2 0 0 -1 0 0 -2 -1 0 -2 -1 0 0 -2 -1 0 0
29 4 3 2 2 0 1, 0 0 0 -1 0 0 -2 -1 0 -2 -1 0 0 -2 -1 0

30 4 2 3 2 2 0 1 0 & 0 -1 0 -2 -2 -1 0 -2 -1 0 0 -2 -1

31 5 4 2 3 2 2 0 1 0 0 -2 -1 0 -2 -2 -1 0 -2 -1 0 0 -2

32 4 3 4 2 1 2 0 0 1 0 0 -2 -1 0 -2 - 2 -1 -2 -2 -1 0 -2

Fig. 12

-23-
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4. Some scattered values of/W,.

We will denote by P the Plotkin bound:

Proposition 16 For any meaningful value of Y4 we have:

fe z

u.o r• ,.3 Pj = ý s (,?,a ,.H ýZ.•a-

Set ; then <w-&', J5A>={~., is our relation 13. and has'

been established, e.g., in [5,2]. The equalities.for 4-/ and Y--

follow then from the inequality4d±- P and from 4. Similarly, the

result for Y•i follows from 2.

We have now

If ,im.L)has the larger of theto possible values, there is a

code 1(n1 2,) with element 1 X; 2 t/ .','• -/ whose weights 4<

verify urz -o and

Then 2 4 =*/A ---.z Z-'(",4--"/)7L] yielding g. =

and thus J# o" for exactly one subscript. From [4, Prop. 4] it follows

then that M2>n ' -/v1-/ has to be a non-negative multiple of -

or and then kc 2. If h2 3 then,, #,')0÷o= - For

))./-j the proof is similar: we obtain, if • i•t- ) •(ý-•"

or -Zi = -} Hence J- = • 07d-(L - -
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but [4, Prop. 6] requires Yn-11-o , or •o • This implies )i'--3=3 and

hence k:-,3
Proposition 15. is thus established. Notice that the techniques used to

prove it yield also further, but less precise, results. For instance,

for

Proposition 17 For _'9 , and yn=,Ma -,A) , we have

~ - t if

~2 4-k)4

.2.x..•-P ( Vw 12/ >•.

•+• ••_/÷•f/ -I

Notice that --z f . The first three equalities

have been established in [2] (see also [5,6,71); they could be obtained

also with the tools developed here and in [4]. To prove the last

equality observe that, if YP>1

If flj , then Y)-k ~=yn ( /) -( 7,.XP,)J and our

result follows from Prop. 16.

Corollary For 2 i
,•-•-÷ -:•) = ?(a•' , ,x )-/ = -

In fact, using Prop. 16:

-25-
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5. The function Au- for •_

The aim of this section :is to prove the following result, that can be

found also in [8]:

Proposition 18 Forh 'iq , w is given by the table of fig. 13 together

with

21.

Equivalently, we can de.0cribe~w- as follows:

Corollary I We have ) and -(n 2)

Further: A - (7 ,ýn 3 ) , -O/ - , ) =3 /,5- -M

(w (mi-2, /3) h= ,Y/5n2. j ,1

.4) 16M - 3(/7,, * ) = 7 .3 ,

Y M

Y 42, 91) 4

Corolary ~ .Furthermore

i f and 7,w( IL z2, 3)1 0-;L~, 3) -i Ury Pt

if 11 9/5 lsb~oz) Is"17-3, /nv' 0-*~ /$i 0,~- and in these cases
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1 2 3 4

1 1

2 2 1

3 2 1

4 2 2 1

5 2 2

6 3 2

7 4 3

8 4 4

9 4 4

10 4

11 5

12 6

13 6
14 7

15 8
16e 8

17 8

18 8

Fig. 13
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This corollary follows at once from the observation that

Finally it may be interesting to point out that the following formula

yieldsw- for - Set

where aL. is the largest integer such that (•R•-)a. t-, and

is the largest integer with _ý- !!ý- 1- /- k-

then:

Corollary_3 For 't- L/we have

L=.

This corollary is obtained by verifying first the values of the table,

and then relation 21. To establish the proposition itself, we shall

actually prove directly the Corollary 1. For -fe-! , we use relation 9.

For A;=• , it is easy to construct codes 4(iz) with r ')=7,. ; on

the other hand •-( 1 ,IJ) Im,)

For 7C=. . Corollary 1 is obtained by setting 6=3 in Prop. 16 and Prop. 17.

If we do the same for -,-=' we obtain all the desired relations, but those

for /•h,- and /•'~-• . These are obtained immediately by observing

that z•r(• -/)=/ and thus

giving •r"/./,-,' ,rYltm and, by 5., -r(A5>"

It has been assumed in two papers [9, 10] that relation 21 holds for

all4j, . This is false. We give here a counterexample to show that, in

particular, 21. does not hold for 1=t. Let )2=1? and •=5. If 21

holds, •Y/ ( -/ . Observe that r/•ir = (th-is follows

in particular from Prop. 20, to be proven later). Thus 21 implies that
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In [5] and [2] it has been shown that At(av d) /Z ; and in [l] there

is a code showing 2!(/•..r 7 . Hence, by relation 4 and Proposition 1,

d~r~f,)f -7-,,1.1 = 19 •contradicting 21.

It is important to note that the periodicity suggested by 21 does hold

for sufficiently large n. More precisely, we have:

Proposition 19

To every~k there corresponds an integer n.(L) such that for any fl n (f)l

From relation 4 and Propositions 1 and 16, we have, for any g and -a:

Setting ..- ,. _ o and remembering

that k_,)(' %- )= P( -. 4 J)-.•- , we obtain:

Since ,. is non-negative, non-increasing, and an integer, there exists

an integer -(qk) such that ( 0 '7, = for all L()*

Since any 13 can be written in the form D •- (•-17, where

I', I / 2k-1 it is sufficient to consider 11 only in this range. Now

let N(At) be the set consisting of the •-/ integers of the form

)I (7for 6 17Zi Z

The largest element of b/',) is then the in Proposition 19.

Proposition 18 merely states that k1 ) = A for - , and .

6. The region in which cvLIL--:

We shall prove here

Proposition 20. The following relations hold:

a. z if and only i'f f ---•'--. and

i-f:o-a for some integer ;
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b j if and only if . and

b-=÷ for some integer -)

c. = if, for some integer

=<) ' = and "k÷/. n -,"-

or /3 ),24 ýj 4 . and "•' Q ý,c -

or Y') 6t••.2 .2 '!j7A and n-fe '•.

Since, for instance, s4(7,)=- we do not have "only if" in part c.

The proof will be based upon Hamming bound H(t)= ei- where C

is the largest integer such that f ( ,e. Proposition 6. and

its Corollary imply a{b)Y-bJ=. and thus lr(nA)9a Z if A '-/ or

I=;,-- On the other hand, under the assumptions of a., we have

that is -(',•.i)- H,)= 2 Thus the "if" part of a. is-established.

Let us now prove c.&,) by first observing that, if n=z , there is a

Reed-Muller code A with and 4Z=,,Ar(4) t: oj((V .

On the other hand

and thus H f Z as long as n=A"- and •-• .7-J. We can now

prove the "if" part of b. Ifand& verify the assumptions of b., then

b-I and-hL verify, the assumptions of a., and thus Z-( •)=•or

t- ur2b), --- . If now ,1= / by c. r)L(• and thus

3 If -- we apply 3.: 6- a)= - - .

-,- . Having thus obtained the `if" part of b.,

Proposition 6 gives the "only if" part of a. and 5. gives the "only if"

part of b.

Relation 5. yields also, because of b. ,u-6)A if 4 d- -z

and 7-f=-z , which is part of c./) . For the larger values of )7-k

considered in /ý) it is easy to show _on'--: .

This last inequality holds true also under the assumption of di. . Under

those assumptions we have
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by /2) . This completes the proof of our proposition. The knowledge

of more accurate bounds for.•t would enable us perhaps to extend these

results to reach regions of more practical interest.

7. A small table of values

We give here two tables of values of.z.r that have been found using the

results given above, those of [41, known codes and several well known

"tricks". The tables cover the following ranges:

The last is illustrated in fig. 16 and 17. In the relatively few

instances in which the exact value oflA(is still unknown, lower and upper

bounds are given.
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 3 4 22 19 17 16 16 67 44 38 35 34 3L-3

2 1 35 23 20 18 16 16 68 45 38 36 34
3 2 1 36 24 20 ý3 17 16 69 46 393634 3-

4 2 2 1 37 24 20 19 18 A-'; 70 46 40 36 35 3 3

5 3 2 2 1 38 25 21 20 18 i. 71 47 40 37 36 .3ý -2
z 4 3 2 2 1 39 26 22 20 19 18 72 48 40 38 36 .3-3s

7 4 4 3 2 2 40 26 22 20 20, 73 48 41 38 36 35--34

8 5 4 4 2 2 41 27 23 21 20/ 74 49 42 39 37 31,

9 c 4 4 3 2 42 28 24 22 20,t2z 75 50 42 40 38 J-31

10 c 5 4 4 3 43 28 24 22 21 20 76 50 43 40 38

11 7 a 5 4 4 44 29 24 23 22 Zo-z/ 77 51 44 40 39 531
12 8 6 c 4 4 45 30 25 24 22 zl-zz 78 52 44 40 40 38

13 8 7 6 5 4 46 30 26 24 23 22 79 52 44 41 40 39

14 9 8 7 6 5 47 31 26 24 24 23 80 53 45 42 40 40

15 10 3 8 7 6 48 32 27 24 24 24 81 54 46 42 41 40

10 10 3 3 8 6 49 32 28 25 24 24 82 54 46 43 42 40

17 11 9 8 3 7 50 33 28 26 2424 83 55 47 44 42 ý,,, -w

13 12 10 3 8 8 51 34 28 26 25 S)-2s" 84 56 48 44 42 -v2.

19 12 10 9 3 8 52 34 29 27 26 , 85 56 48 44 43 q!-z,

20 13 111 0 9 8 53 35 30 28 26 gr"oz4 86 57 48 45 44 42

21 14 12 10 10 T-) 54 36 30 28 27 26 87 58 49 46 44 43

22 14 1211 10 9-/,) 55 36 31 28 28 27 88 58 50 46 44 44

23 15 12 12 1i' 56 37 32 29 28 2.3 89 59 50 47 45 44

24 16 13 12 12 - 57 38 32 30 28 28 90 60 51 48 46 44

25 1ý,14 12 12 ,o- 58 38 32 30 29 28 91 60 52 48 46 45
26 17 14 13 12 io-/z 59 39 33 31 30 29 92 61 52 48 47 46

27 18 15 14 13 /.'- 60 40 34 32 30 30 93 62 52 48 4.8 46

28 18 16 14 14 /2-/3 ci 40 34 32 31 30 94 62 53 49 48 47

29 19 16 15 14 13-/,1, 62 41 35 32 32.1• 95 63 54 50 48 48
30 20 16 16 15 14 63 42 36 32 32 32 96 64 54 50 48 48
31. 20 17 16 16 15 64 42 36 33 32 32 97 64 55 51 49 48

32 21 18 116 15 43 36 34 32 32 98 65 5 52 50 0.-
33 22 18 15 16 16 1 44 37 34 33 32 99 66 56 52 50 •-s

100 66 56 52 50 y-5

Fig. 14 -Is) for ?i=_ioo
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
i i

2 2 1

3 3 2 1

4 4221

5 5 3 2 2 1

6 64322 1
7 744322 1

8 8 5 44222 1

9 96443222 1

10 10 6 5 4 4 3 2 2 2 1

11 11 7 6 5 4 4 3 2 2 2 1

12 12 8 6 6 4 4 4 3 2 2 2 1

13 138 7 6 5 4 4 4 3 2 2 2 1

14 14 9 8 7 6 5 4 4 4 3 2 2 2 1

15 15 108 8 7 6 5 4 4 4 3 2 2 2 1

16 16 io 8 8 8 6 6 5 4 4 4 2 2 2 2 1

17 17119 8 8 7 6 6 5 4 4 3 2 2 2 2 1

18 1812 108 8 8 7 6 6 1-." 4 4 3 2 2 2 2 1

19 1912 09 8 8 76 4 4 32 2 2 2 1

20 2013 111 09 8 8 8 7 6 q'- .- 4 4 3 2 2 2 2 1

21 211412 10 0 Y-1 8 8 8 7 6 S- 4-Y4 4 3 2 2 2 2 1

22 221412 11i 10f-bo F-1 8 8 8 7 6 Y- 4 4 4 3 2 2 2 2 1

23 2315 12 12 11 me,?-)o M-8 8 8 7 s-& " 4 4 4 3 2 2 2 2 1

24 24161312 12 ---1 ?-/o?7''-1 8 8 8 6 -- 4 4 4 4 3 2 2 2 2 1

Fig. 15 for -
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Fig. 1.7

The lines n const and w even const
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